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TAGRA – MLC SUBGROUP
Background

At the last meeting of the MLC subgroup, progress was reported on work to derive an model and indicators which would form the basis of a new MLC index for the Mental Health and Learning Difficulties care programme. The decision was made to continue to work at the intermediate geography level, and to investigate model transformations in more detail.
Summary

Since the last subgroup meeting, work has been conducted in the following areas:
· Indicators: updating the SMR measure, moving from an under 75s SMR to an over 65s, and investigating alternative indicators (Annex A); 
· Comparison of results for urban and rural areas (Annex B);
· Comparing the results of using three years’ average data to data from single years (Annex C);

· Considering non-linearity through interaction or squared terms (Annex D);
· Comparing results under different functional forms (Annex E).
The analytical conclusions of the work are as follows:

· No new possible indicators of need have been identified;

· After considering performance of indicators in urban and rural areas, it is proposed to drop attendance allowance as an indicator and use only SMR;

· After considering various measures of model performance in urban and rural areas, it is not proposed to make an explicit adjustment for these areas within the model;

· No firm conclusions are drawn relating to the use of three year average or single year data. Further guidance from the subgroup is required;

· No clear conclusions are drawn regarding model form or transformations. The simplest model, the linear form, is therefore proposed, but further guidance from the subgroup would be welcome.

The analysis is presented in more detail below.

Iain Pearce

Health Analytical Services

Health Finance and Information Division

ANNEX A – Consideration of other indicators

In paper TMLC09, the following need indicators, when modelled with the set of supply variables, were found to give the highest adjusted R2:

· Under 75 all cause SMR;

· Attendance Allowance; and

· SIMD score.

As SIMD was not a significant explanatory variable of need in rural areas, it has been dropped from the model.

Since the last meeting, the following additional analysis has been undertaken.

1. SMR data
The under 75 all cause SMR has been replaced with over 65 all cause SMR data. As shown in Table A.1, this new indicator was significant in all model forms and provided a superior adjusted R2, and so has been used in all subsequent analysis.

Table A.1 – Adjusted R2 using different SMR indicators
	Model
	Linear
	Log-linear
	Log-log

	SMR under 75s
	10.8%
	24.8%
	22.1%

	SMR over 65s
	17.1%
	22.0%
	26.6%


2. Analysis of additional need indicators

Attempts were made to identify any other additional indicators for possible inclusion in the model, in addition to those already tested. Indicators considered were:

· Proximity to derelict sites (measure of physical environment);

· Proportion of population claiming single adult discount (measure of social connectedness);

· Crime rate;

· Proportion of properties in council tax band A to C.

The median number of rooms in a property (a potential measure of overcrowding) was also considered, but could not be used as data are only partially complete for Shetland and areas of Highland local authorities.

A step-wise regression was carried out using these indicators across the following functional forms:

· Linear model;

· Log-linear model;

· Log-log model.

This involved running an initial model with all possible need indicators, including the currently preferred SMR and Attendance Allowance, and then dropping the least significant need indicator and re-running the model. This process was repeated until only significant need indicators remained. This analysis was conducted at the Scotland level. The final indicator sets for the different models are shown below. The SMR for over the 65 population and attendance allowance were both significant predictors of utilization, although within the log-log model proximity to derelict site was also marginally significant.
Table A.2 – Final set of indicators following step-wise regression

	Model
	Linear
	Log-linear
	Log-log

	Indicators
	SMR over 65s

Attendance allowance
	SMR over 65s

Attendance allowance
	SMR over 65s

Attendance allowance
Proximity to derelict (*)


* Not significant at 5% level. P-value 0.055

The adjusted R2 for these models is shown in the table below. Although the adjusted R2 varies between the models, the additional explanatory power of the need index is similar.
Table A.3 – Adjusted R2 for different models

	Model
	Linear
	Log-linear
	Log-log

	Adjusted R2
	18.3%
	28.4%
	28.1%

	Explanatory power of need indicators
	10.2%
	9.0%
	8.8%


These models were taken forward for further analysis, described in Annex B.
ANNEX B – Urban rural comparison
For each of the models described above, the performance of the selected indicators was then assessed for different urban and rural areas by running the models separately on urban and rural areas as defined within the Scottish Government’s Urban Rural Classification.. Checks were then carried out as to whether the indicators remained significant at the different geographies. In general, all indicators remained significant for urban areas, with the exception of proximity to a derelict site, but some were insignificant in rural areas. This is shown in the table below.

Table B.1 – Indicators significant in rural areas
	
	
Model



	Indicator
	Linear
	Log-linear
	Log-log

	SMR over 65s
	(
	(
	(

	Attendance allowance
	(
	(
	(

	Proximity to derelict
	-
	-
	(


These results suggest that the SMR for the over 65s is the only consistently reliable indicator across all areas. Given this, an analysis was carried out of the effect of dropping attendance allowance and proximity to a derelict site from the model. The difference in adjusted R2 is shown below.

Table B.2 – Impact of removing attendance allowance from the model on adjusted R2
	· Indicator
	Model

	
	Linear
	Log-linear
	Log-log

	Including AA
	18.3
	28.4
	26.8

	Excluding AA
	18.1
	28.0
	27.7


Given the small difference between in explanatory power when Attendance Allowance is either included or excluded, and the lack of significance of this term in rural areas, it is proposed to drop the indicator from the model.

The proposed over 65 morbidity and life circumstances adjustment would therefore based on a single indicator: all cause SMR for the over 65s.

In addition to comparing model fit using a simple urban/rural split, the variant split developed by NHS Highland, looking at remote small towns, remote rural, and accessible rural can also be considered. Firstly, these areas can be included within the model directly, to see if these areas have significantly higher costs not explained by the model. Across all models this is not the case.

Table B.3 – significance of rural categories as predictors of need
	
	
Model



	Indicator
	Linear
	Log-linear
	Log-log

	Remote small towns
	(
	(
	(

	Remote rural areas
	(
	(
	(

	Accessible rural areas
	(
	(
	(


Secondly, it is possible to run the model separately in each of these areas, and check whether the model results change. A simple test here is to consider whether SMR for over 65s remains significant. This is shown in the table below.

Table B.4 – Test of significance for SMR in different submodels
	Indicator
	Number of zones
	Model

	
	
	Linear
	Log-linear
	Log-log

	Remote small towns
	50
	(
	(
	(

	Remote rural areas
	145
	(
	(
	(

	Accessible rural areas
	82
	(
	(
	(


A clear pattern emerges, which is that the SMR for the over 65s only remains significant in remote rural areas. It is difficult to state, however, whether this is because it is not a good indicator in the other areas, or whether this is simply the impact of the smaller number of zones in these areas.

Recommendation 
Given that rural categories themselves are not significant within the specified models, and that the current indicators perform well within the aggregate rural measure, it is proposed not to include any specific adjustment for urban rural differences within the model.

ANNEX C – Comparison of three years’ and annual data
Analysis to date has used the average of three years’ data. The tables below compare the results of moving to annual data on both the goodness of fit of the models and the estimated relationship between the need indicator and deprivation.
Table C.1 – Linear model results
	
	2007
	2008
	2009
	3 year average

	Adj. R2
	11.9%
	13.3%
	17.4%
	18.1%

	Need coefficient 
	1.10
	0.95
	1.13
	1.49

	Sig diff from 3 year?
	(
	(
	(
	N/A


Table C.2 – Log model results
	
	2007
	2008
	2009
	3 year average

	Adj. R2
	14.6%
	20.6%
	22.9%
	28.1%

	Need coefficient (% change from 3 year estimate)
	0.74
	0.75
	0.91
	1.08

	Sig diff from 3 year?
	(
	(
	(
	N/A


Table C.3 – Log log model results
	
	2007
	2008
	2009
	3 year average

	Adj. R2
	14.6%
	20.6%
	22.9%
	27.7%

	Need coefficient (% change from 3 year estimate)
	0.69
	0.72
	0.90
	1.06

	Sig diff from 3 year?
	(
	(
	(
	N/A


Across all models, therefore, we see a common pattern. The individual year data have a lower explanatory power than the 3 year model, which to a degree is to be expected. However, there also appears to be trend for both the explanatory power of the models and the relationship between the need indicators and utilization to increase over time.

Recommendation
There is no clear reason to prefer either the use of the three year average data or a single year’s data. The three year average data will naturally be more stable, but whether this stability provides a more accurate formula is not clear. It has been previously discussed that there is ongoing change in how Mental Health and Learning Difficulties services are being delivered by NHS Boards, and the year on year differences in the data may reflect these changes in a valid manner.

The subgroup is asked to discuss the data and express their preferences for the data to be used in the calculations.
ANNEX D - Interaction and squared terms

As only a single need indicator is proposed for the over 65 age group, it is not possible to consider interaction terms. However, it is possible to consider the inclusion of a squared term in the model. This squared term would be included in addition to the existing indicator.

The impact of including a squared term is to allow a non-linear interpretation of the relationship between need and utilization of healthcare. 

It is difficult to include a squared-term within the log-log model. This is due to the fact that, mathematically:

Log(SMR2) = 2* Log (SMR).

Therefore, the term Log(SMR) would appear twice within the model, with the second term essentially meaningless.
 

The results of including a squared term within the linear and log-linear models is shown in the table below.

Table D.1 – Model performance with and without a squared term

	
	Model

	
	Linear
	Log-linear

	Squared term significant?
	Yes
	No

	R2 excluding squared term
	18.1
	28.0

	R2 including squared term
	20.7
	26.5


Perhaps unsurprisingly, including a squared term does not improve the goodness of fit of the log-linear model, which is already non-linear. It does appear to improve the fit of the linear model, and is a significant variable in this case. However, inclusion of a squared term reduces model performance in rural areas, and it is not significant in these areas. Due to the interaction between the squared and non-squared terms, the non-squared term also becomes insignificant in rural areas.

Further analysis has demonstrated that the linear model with a squared term follows a very similar pattern to a quasi-poisson general linear model (GLM). This option is discussed in more detail in Annex E below.

ANNEX E - Model transformations
This section considers in more detail the different possible transformation for the models. As well as the models considered previously, this section also considers applying a general linear model. Annex F contains graphs of the residuals of the models discussed here.
Although not uncommon in the health literature, transformations are not without their drawbacks. The primary drawback is that resources are not allocated in transformed space, that is, boards do not receive log £s. It is important to ensure that the model results continue to make sense 

Another difficulty it is not straightforward to compare models. For example, not all models produce adjusted R2, and it is not possible to compare the coefficients of models which produce calculations on the log-scale to those which operate on the linear scale.

One approach to comparing model transformations is to consider how the model predictions compare to the actual data. This is in essence what is shown statistically through the adjusted R2. A starting point is to compare how the models predict the average value of the data, which by definition is 1. This is shown in the table below.

Table E.1 – Predicted means from different models
	
	Model

	
	Linear
	Log-linear
	Log-log
	GLM

	Adjusted R2
	18.1%
	28.0%
	27.7%
	N/A

	Predicted mean
	1.00
	0.81
	0.75
	1.01


The results in Table E.1 show that the log transformations, although they have higher adjusted R2, under predict need in the population. The literature surrounding these transformations suggest that this can be a common problem with log transformed models, and must be corrected through use of a smearing factor. Two smearing factors, Duan’s and Manning’s, have been applied to these models, as shown in Table E.2 below. Duan’s smear, which assumes that the error term is homoskedastic, offers no advantage over the previous model. Manning’s smear, which allows for a heteroskedastic error term, is an improvement, but a best results in the predicted population mean need being overestimated by 20%. The log transformed models are therefore considered unsuitable for allocation purposes.

Table E.2 – Predicted means from log transformed models with smearing factors

	Method
	Log model
	Log-log model

	Duan’s smear
	3.64
	3.49

	Manning’s smear
	1.45
	1.20


Other than the population mean, the comparison of the models for the data as a whole is shown graphically below. Although not shown here, the performance of the linear model including a squared need indicator is almost identical to that of the GM model.
Figure E.1
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As well as looking at the model results graphically, statistical comparisons of the models can be carried out. The performance of the model can be measured by calculating the residual sum of squares (RSS).

RSS = (model prediction – actual value)2
Where this is calculated for all observations and then summed. The square term is used to ensure than under and over predictions by a model do not cancel one another out.

The larger the RSS, the less accurate the model’s predictive power. The relative performance of the different models is highlighted when looking at the RSS for all observations, and when the top 11 observations (less than 1% of data) are excluded. These observations are quite extreme, having age-sex adjusted cost-weighted utilisation more than five times the national average.
The distribution of these zones across Scotland is shown in the table below.

Table E.3 – Distribution of excluded zones across NHS Boards
	NHS Board
	Number of excluded zones
	Population excluded (%)

	Ayrshire & Arran
	0
	0.0%

	Borders
	0
	0.0%

	Fife
	0
	0.0%

	Greater Glasgow & Clyde
	3
	0.9%

	Highland
	1
	1.2%

	Lanarkshire
	3
	2.1%

	Grampian
	1
	0.5%

	Orkney
	0
	0.0%

	Lothian
	1
	0.2%

	Tayside
	1
	0.5%

	Forth Valley
	1
	1.0%

	Western Isles
	0
	0.0%

	Dumfries & Galloway
	0
	0.0%

	Shetland
	0
	0.0%

	Scotland
	11
	0.7%


Table E.4 – RSS of different models
	
	Linear
	GLM
	GLM over linear

	All observations
	1386
	1291
	-6.8%

	Extreme values excluded
	494
	532
	7.6%

	Model error associated with extreme values
	64%
	59%
	-


The data in Table E.4 show that the linear model is more accurate than the GLM when the extreme values are excluded, and that the GLM is more accurate than the linear model when they are included. Neither model is particularly successful at predicting these values, with approximately 60% of model error associated with them. 

Analytically, it is difficult to prefer either the linear model or the GLM. A trade-off appears to exist regarding accuracy in modelling the majority of the population and modelling the extremes of the population.

One possible approach to quantifying this difference is to consider the relative performance of the models across different sections of the data, and then average across these. One difficulty of this approach is that different results can be obtained depending on how the data is sliced. Some possible approaches and results are shown in Table E.5. When data is disaggregated into quarters, tenths, or fiftieths, the linear model on average is more accurate for each of these segments. When data is disaggregated into individual percentiles, however, the GLM model is on average more accurate. If data is disaggregated to even smaller levels, the linear model is again on average more accurate, although at this level there are a number of empty observations.
Table E.5 – Comparison of different average model RSS for different data disaggregation
	Data split into
	GLM RSS over linear RSS average across relevant data split

	4ths
	3.9%

	10ths
	5.1%

	50ths
	1.9%

	100ths
	-1.2%

	200ths
	3.8%


Recommendation
Given the lack of any strong analytical reason to select one model form over another, it is proposed to select the simplest model, which is the linear model. The subgroup is asked to discuss this proposal.

ANNEX F – Comparison of model residuals 
The graphs below provide residual plots of the different models. The residual (or model error) should ideally be close to zero. The residual is defined as actual value minus the predicted value. Therefore, systematically negative error terms indicate a model has a tendency to overestimate need, and systematically positive error terms indicate a model underestimates need. The residuals are shown plotted against estimated need, with a trend line used to show whether there is a relationship between estimated need and error.

The results show the weaknesses of the log transformed models discussed above. For both log transformations, when the predicted values are transformed into the raw scale, there is a clear and strongly statistically significant tendency for these models to overestimate need in higher need areas. In contrast, the residual of the two linear models and the general linear model (GLM) is unrelated to need.

The differences between the two linear models and GLM are small, and it is not possible to say whether one is superior to another in the terms of this analysis of residuals.

Figure F.1 - Residual for linear model
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Figure F.2 – Residual for log-linear model
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Figure F.3 – Residual for log-log model
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Figure F.4 – residual for linear model with interaction term
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Figure F.5 – residual for general linear model
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ANNEX G – The GLM model
The use of a general linear model (GLM) allows model data to be transformed with fewer restrictions than those within the a simple log transformation.

For example, the draw back of the log transformation, as discussed above, is that when data are transformed back into ordinary values, the population mean is not accurately reproduced. A GLM model aims to avoid this by undertaking the calculations in the raw scale, to ensure that after the transformation they can continue to reproduce the population mean.

Due to the flexibility of GLM, there are a large number of different models that that can be examined. The model used in this analysis is a poisson model. A basic model run was conducted assuming that the data had constant variance. Use of the Park test to examine the residuals then recommended the final model assume that the variance be equal to the mean.
� Note that technically a model could be derived by taking (log(SMR))2, rather than log(SMR2). However, given that the aim of the inclusion of the squared term is to introduce non-linearity into the model, and that the log-log model is already non-linear, coupled with the fact that the model outputs would be difficult to interpret and use within a resource allocation process. This approach has therefore not been used here.
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